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ABSTRACT

This report summarizes the work performed during the first year of a
research effort to determine the sound fields associated with jet engine
inlet configurations. A solution approach for axisymmetric bodies based
upon the integral formulation of the wave equation has been developed,
This solution approach circumvents the uniqueness problems which normally
occur at certain frequencies when "straight forward" solutions of the in-
tegral equation are obtained, A numerical method and a computer program
for solving for the acoustic field associated with general inlet config-
urations and boundary conditions have also been developed. To evaluate
the numerical method, computed and exact results are compared for a sphere
and a finite length cylinder, For continuous boundary conditions, the
agreement is within ten per cent over a range of nondimensional frequencies
from one to ten, For discontinuous boundary conditions, the numerical errors
increase by a factor of two. This report presents results for a given inlet
configuration and the computed and exact solutions are shown to agree to
within ten per cent over the nondimensional frequency range from one to

ten,
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I. INTRODUCTION
This report summarizes the results obtained during the first year of
support under AFOSR Contract Number F49620-77-C-0066, This contract was

initiated on February 1, 1977,

The research conducted under this contract is directed towards develop-
ing analytical techniques for predicting the characteristics of the radiated
sound fields from jet engine inlets, Such capabilities are necessary to evalu=-
ate the effectiveness of potential sound source modifications and the effi-
ciency of sound suppression techniques for fan and compressor noise attenua-
tion in inlets, During the first year, the conducted research efforts have
concentrated on the development of an efficient analytical technique for the
prediction of the radiated fields associated with lined inlet configurations.
In the second year, experimental investigations will be conducted to provide
data for comparison with the theoretical predictions.

During the first year, a solution approach based upon an integral formula=-
tion of the wave equation has been developed and used to determine the charac-
teristics of the sound fields of several previously investigated geometries,
Efficient numerical techniques have been devised for solving the integral
equation, and the necessary computer programs have been written and tested,
These programs are now capable of computing the surface and radiated sound
fields for arbitrary geometries with lined or unlined surfaces and sound
sources of arbitrary spatial dependence. These capabilities are necessary for
the investigations of sound fields from jet inlet configurations,

The efforts conducted under this contract has resulted in three publica-
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tions = which are included in Appendices A-C of this report, These publi-

cations provide more detailed descriptions of the research efforts conducted




under this contract. The research performed during the first year is sum-

marized in the following sections.

II. ANALYTICAL TECHNIQUE

The general analytical method used to determine the radiated sound fields
from arbitrary geometries is described in Appendix A, This technique is based
on the integral form of the solutions to the wave equation, This general form-
ulation has been specialized to axisymmetric configurations, which are applic=-
able to jet engine configurations which are of interest in this study, in Ap-
pendix B,

The study of sound radiation involves the determination of the acoustic
field over an infinite domain, However, with the integral formulation of the
wave equation, the acoustic potential, which is proportional to the acoustic
pressure, can be computed at any point in the far field solely from the values
of the potential distribution at the surface. Thus, the problem is reduced to
solving for the acoustic field at the surface only instead of over an infinite
domain,

Several problems are encountered while solving the integral equation
governing the surface potential distribution, At certain frequencies the equa-
tion fails to yield a unique solution, These frequencies correspond to internal
eigenfrequencies (or resonant frequencies) of the geometry under consideration,
This nonuniqueness manifests itself when numerically solving the integral
equation by causing the coefficient matrix of the system of linear algebraic
equations which results from the application of approximate quadrature to the

integral equation to become ill-conditioned, causing large numerical errors,




Using a method proposed by Burton and Miller (Ref, 13 of Appendix A),
this behavior can be eliminated, This method consists of adding the inte-
gral equation for the normal velocity multiplied by a coupling constant,
It is then proven that the solution for the acoustic potential field from
the combined equation is unique for imaginary values of the coupling con-
stant, This analytical method was therefore incorporated in this study,
Although other techniques can be used to avoid the uniqueness problem at ]
certain frequencies (Refs, 4, 6, and 14 of Appendix A), the combined in-
tegral equation of Burton and Miller was found to zive the best results,
and it required minimum computation times,

In order to use the Burton and Miller method two problems had to be
resolved, First, a strong singularity exists in the integrand of the com-
bined integral equation developed by Burton and Miller, In the present
study, this equation was reformulated to obtain an equation containing only
weakly singular terms which could be handled numerically, The second prob=-
lem is connected with the choice of the coupling constant used by Burton
and Miller in combining the integral equations for the potential and nor-
mal velocity. It has been found in this study that an optimum value for
this parameter for use in numerical computations can be found. Although
Burton and Miller showed that the parameter must contain a nonzero imagi-
nary component, they gave no indication of how the results are affected by
this parameter, The value which gives the best numerical results is i/k

where i =V=1 and k is the wave number,




III. NUMERICAL METHOD

A, Integration Procedure

To determine the acoustic field associated with a geometry, the integral
equation describing the surface potential distribution must first be solved.
Using this distribution, the potential at any exterior point can then be
determined to generate the far field sound pattern, For general geometries,
the integral equations cannot be solved exactly, and approximate methods
must be used, These methods result in a system of linear, algebraic equations
with complex coefficients which can be solved by complex Gauss-Jordan reduc=-
tion to obtain the acoustic potential distribution at the surface,

For the axisymmetric formulation used in this investigation, the surface
shape is defined by a line in the radial r and axial z directions, and this
line is rotated about the axis, The integral equation can then be separated
into two line integrals; one in the tangential direction and one along the
surface contour in the r - z plane, In the tangential direction, the line
integrals are given by Eqns, (15)=(17) of Appendix B, which, in general,
must be solved numerically, A 96=-point Gaussian quadrature formula was used
to evaluate these integrals., The computational error is approximately in-
versely proportional to the number of points used to evaluate the integrals
in the tangential direction, Along the surface contour in the r - z plane,
the integration of Eq, (18) in Appendix B is required. The integral over
the perimeter is first separated into integrals over n subintervals of either
constant or varying lengths, The acoustic potential is assumed constant over
each subinterval and it is taken outside the integral, Finally, a two=-point
Gaussian quadrature formula is used to evaluate the components of the func-
tions defined by Eqs, (15)=(17) of Appendix B in the r -z plane over each

subinterval, Increasing the order of the Gaussian quadrature does not sig-
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nificantly affect the accuracy of the computations, However, the error was
found to decrease proportionately as the number subintervals n was increased,

In another solution approach, the potential was assumed to vary linearly
over each interval in order to improve the accuracy of the correct potential
values, However, the results using this linear interpolation scheme were not
as accurate as in the above-mentioned approach, The cause of the inaccuracies
in this scheme have not been extensively studied because of time restrictions,
However, the errors appear to arise from the implementation procedure used,
When linear interpolation was applied to a finite cylinder, problems arose
at the corner points, At these points the normal to the surface appearing
in the integral equation is undefined, If the potential is assumed constant
over each subinterval, subintervals can be taken on either side of this
point which in effect avoids the corner points, The method used in applying
the linear interpolation about these points strongly influences the computed
results, Although several techniques were tried, none proved entirely satis-
factory. Also, for general surfaces for which the subintervals may be of un-
equal length, the difficulty in implementing the linear interpolation tech-
nique and its questionable value make this method impractical, Therefore, it
will not be used in future studies unless significant improvem-its can be
made,

In another study involving the numerical evaluation of the integral
equations, the effect of the coupling constant (o appearing in Eq. (23) of
Appendix A) was investigated, In the method of Burton and Miller, the inte=-
gral equations for the acoustic potential and normal velocity at the surface
are combined into one equation, The terms from the potential equation are of

order k whereas the terms from the expression for the normal velocity are of




order k2. Thus, as the frequency is increased, the terms of order k2

dominate, The results become less accurate because the combined equation

in effect becomes the equation for the normal velocity. This equation,

like the integral formula for the acoustic potential, yields large errors
at certain frequencies when numerically evaluated., By choosing the coupling
constant to be i/k, the terms of order k2 are now reduced to order k, Now,
as the frequency is increased, the terms from the expression for the normal 1
velocity do not become deminant, and the uniqueness problem is avoided at

all frequencies,

B. Evaluation of Geometric Parameters and Boundary Conditions

The geometric parameters appearing in the integrai Helmholtz equation
(see Equation (23) of Appendix A) are the distances between points on the
surface, the normal vector at each point, and the lengths of the subinter=-
vals in the axial plane., The method for computing these parameters is pre=-
sented in Section III of Appendix C,

There are two types of boundary conditions which must be specified over
the surface., The first consists of a forcing function which generates the
acoustic field, In a jet engine inlet, most of the acoustic field is pro-
duced by disturbances caused by the interaction between the flow field
produced by the fan blade: and the stator waves, A literature search was
conducted to determine the spatial dependence of the sound generated by the
stator-blade interaction so that the resulting radiated sound pattern could
be computed, Because of the complexity of the resulting expressionsQ, there
was not sufficient time to use these predictions in the present research effort,
However, both the analytical and numerical methods used in computing the radi-

ated sound field in the present study are capable of handling forcing functions
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of arbitrary spatial dependence in the r -z plane, such as those encountered
in jet engine inlets,

The second type of boundary condition is given by specifying the reaction
of the surface to the wave motion., For rigid surfaces, the normal velocity
(i.e., the normal derivative of the acoustic potential) is zero and all the
sound incident on the surface is reflected, For nonrigid or sound absorbing
surfaces, the normal velocity is nonzero since the surface now vibrates in
response to the wave motion, The normal velocity at the surface is propor-
tional to the pressure oscillations (i.e., the acoustic potential) of the
surrounding fluid and the constant of proportionality is called the surface
admittance, The integral wave equation involves both the acoustic potential
and the normal acoustic velocity which means there is one equation for two
unknowns. By using the admittance relationship, the normal velocity can be
expressed in terms of the acoustic potential and the admittance., The result-
ing equation can then be solved for the potential,

The admittance is a measure of the sound absorption characteristics of
the surface, In jet engine inlets the surfaces are often lined with Helm-
holtz resonator arrays which absorb sound and reduce the noise radiated to
the surroundings., Expressions for the admittances of these sound absorbing
devices have been derived5 and they can be used in the present investigation,
In fact, the capability exists to predict the sound field produced from a

jet engine inlet for arbitrary sound source and admittance characteristics.

C. Computer Program

A computer program written in Extended FORTRAN IV has been developed
for use on a CDC CYBER 70 computer for solving the system of linear alge-
braic equations which result from the numerical approximation to the inte=-

gral wave equation, This program has been thoroughly checked out using
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simple geometries for which exact solutions can b' obtained, The program
employs standard functions common to all FORTRAN compilers so that it can
be used with minimum modifications on other computers, Generality is main-
tained in order to accommodate arbitrary surface geometries and boundary
conditions, In the cases run to date, the computation time for determining

the surface potential is given by the following approximate formula

&~ 005 (o)

where t is the computation time in seconds and n is the number of subinter=-
vals used in the numerical evaluation of the integral equation., Approximately
one second per point is required for the far field potential, For the cases
run thus far, the run times have been from 20 to 140 seconds for 20 to 53
subintervals, Efforts toward maximizing the programming and numerical effi-

ciency have resulted in these relatively short run times,

IV, RESULTS AND SUMMARY

A, Simple Geometries

To check the numerical schemes used in this investigation, preliminary
computations using a sphere and a cylinder of finite length were obtained.
The results are presented in Section III of Appendix B. In all cases, 20
subintervals were taken in the r -z plane and a 20-point Gaussian quadrature
was used to evaluate the integrals in the tangential direction. The results
for these simple geometries can be summarized as follows:

(1) The coupling parameter used in the Burton and Miller (¢ in Eq. (23)

Appendix A) should be taken as i/k where k is the wave number and
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(2) For the cylinder, the error in the computed results increases with
increasing frequency. For continuous boundary conditions the error
is less than 10% at all frequencies,

(3) Discontinuous boundary conditions, where the admittance is specified
over part of the surface and a forcing function over the remainder,
decrease accuracy of the results, The computed and exact values agree
to within 10% for low nondimensional wave numbers (i.e., ka < 5where
a is the radius of the cylinder), Errors of 40% at the point of dis-
continuity occur at a nondimensional wave number of 10, The remainder
of the points agree to within 12% at this frequency,

(4) In the tangential plane, the spatial distribution of the acoustic
potential varies as cos m O where m is an integer, Increasing m
does not affect the accuracy of the results significantly,

(5) The computed far field acoustic potentials are at least as accurate
as the computed surface potentials,

(6) The far field results are accurate at distances greater than the

length of one subinterval from the surface,

B. Inlet Configuration

The studies of the acoustic fields of the sphere and cylinder served to
evaluate and refine the numerical procedures and programming techniques, The
next configuration investigated was an inlet used in a study by NASA6. This
inlet is shown in Fig., 1 and it was chosen because:

(1) unlike most inlets used in research studies, it does not have a bell=-

mouth shape but is shaped like a typical inlet used in existing

aircraft;
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(2) complete details on generating the inlet boundary are given; and
(3) it is being used in a related study being conducted at Georgia
Tech concerning the prediction of the sound field inside the
inlet; so the sound field, at least inside the duct, can be com=-
pared with results obtained independently by other numerical
methods,
The back side of the inlet is presently assumed to be spherical,
To obtain exact results for comparison with the numerical computations,
a spherical source was assumed to be placed at (r,z) = (0,0). The acoustic
potential and normal velocity for this source can be readily computed at
every point, In particular, they can be computed on the surface of the
inlet, The value of the normal velocity at each point along the surface of
the inlet is then used as the boundary condition in the integral equation,
From this boundary condition the value of the potential can then be numerical-
ly computed using the techniques described in Chapter III and compared with
the exact potential known from the spherical source solution, As seen in
Fig., 2, the normal acoustic velocity distribution, which represents a forcing
function is highly discontinuous and it provides a severe test of the numeri-
cal techniques employed,
The numerical and exact solutions for the surface acoustic potential are
compared in Fig. 2 for 32 and 54 subintervals taken along the perimeter of
the inlet in the r -z plane, Because of the errors in approximating the lengths
of each subinterval, the exact solutions differ slightly as the distance along
the perimeter S increases, The centerbody in Fig. 1 extends from 0<S<0.8,
the fan inlet covers 0,8 <S< 1,4, the interior contour extends froml.l+<S_<_3.5,

the exterior from 3,5<S< 5,5, and the circular arc lies within the interval

11
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5¢5< 8§< 7.45, Increasing the number of points decreases the error pro-
portionately as indicated by the data in Fig, 2 at a nondimensional fre-
quency to a of unity, where a is the radius of the inlet at the fan entrance
section, The absolute average error in the results decrease from 10,2 per
cent for 32 subintervals to 4,16 per cent for 53 subintervals, The computa-
tion time increased from 53 seconds to 143 seconds, respectively,

As shown in Fig, 3, the errors increase with increasing frequency. Like
the cylinder, the maximum error of the potential for the inlet configuration
occurs at the éoints of discontinuity, The average error increases from 4,16
per cent at ka=1 to 15 per cent at ka= 10,

For the data in Figs. 2 and 3, the acoustic potential is assumed constant
in the tangential plane, The results for a cos(m@) distribution are presented
in Fige. 4 at ka= 2, These results show the insensitivity of the accuracy
of the computed results to the tangential distribution for m=1, 2,

Based on the results obtained thus far, the numerical and programming
techniques are capable of yielding reliable results for arbitrary geometries
and boundary conditions., At higher frequencies,(ka<5) it appears that more
points must be taken to increase the accuracy of the computed results,

Next year, experiments will be conducted to measure the acoustic field
radiated from an open-ended pipe for comparison with the computed results,

A parametric study of the effect of the placement and quality of sound treat=-
ment on sound abatement in an inlet configuration will be conducted., Further
improvements in the programming and numerical methods will also be investi-

gated,
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Abstract

This paper is concerned with the development of a procedure for generating
the sound fields radiated by arbitrarily shaped, three dimensional bodies from
an integral representation of the solutions of the Helmholtz equation. The
method of Burton and Miller is employed to eliminate the nonuniqueness in the
external Helmholtz formulae which occurs at the internal eigenfrequencies of
the geometry under consideration. Also, a representation of the most singular
component in the Burton and Miller formulation is developed resulting in an
integral equation which is amenable to numerical solutions. A simple numerical
scheme is introduced which reduces the large amounts of computer storage and
time normally required for the solution of similar problems, This numerical
scheme is then used to obtain solutions for the radiated sound field generated
by a vibrating piston set in a sphere, The numerical solutions for the surface
and far field sound patterns are compared with exact analytical solutions and
deviations of ten percent at most are noted, Since the symmetry of the gphere
was not taken advantage of in these computations, the numerical schemes employed
are applicable to general three dimensional sound radiation problems.
I. Introduction

The development of a simple analytical form and an efficient numerical method
for the prediction of the characteristics of the sound fields radiated by three
dimensional bodies is the main concern of this paper. Such prediction techniques
have a variety of applications in science and engineering; for example, the de-
termination of the sound fields radiated by aircraft and underwater vehicles,
The approach developed in this investigation is by no means limited to acoustic
radiation problems as other wave pheromena are governed by similar equations.
Thus, the analytical and numerical methods employed here are also directly ap-

plicable to other fields of engineering such as electromagnetic antenna theory
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and wave scattering problens,

This research was undertaken with the objective of determining the applica-
bility of certain integral equation formulations for the exterior Helmholtz
problem in the prediction of the radiated sound fields produced by three di-
mensional bodies, In principle, integral formulations appear very attractive
as they (1) eliminate the need to consider the infinite dozmains normally associ-
ated with radiation problems; (2) reduce the dimensionality of the problem by
one (e.g., from a three dimensional partial differential equation to a two di-
mensional surface integral equation); and (3) can readily handie arbitrary
geometries and boundary conditions, All three properties are very advantageous
from a computational point of view as the first two significantly reduce the
computer storage requirement for solution and the third eliminates the need to
extensively modify the computer code when the geometry or the boundary condi-
tions are altered.

Difficulties arise, however, in the use of the Helmholtz formulae és'their
solution depends upon the numerical evaluation of singular, oscillatory inte-
grands.l_5 Also, most external boundary integral representations suffer from a
nonuniqueness of the solution at frequencies corresponding to the eigenfrequen-
cies of the associated internal problem of the same geometry.6-8 Keeping these
difficulties in mind, the work presented in this paper is specifically concerned
with the following problems: (1) the development of an accurate and efficient
numerical scheme for handling the oscillatory, singular integrands encountered
in the application of the Helmholtz formulae; (2) the determination of the most

effective procedure for handling the nonuniqueness of the radiation solution at

eigenvalues of the associated internal acoustic problem; and (3) the determination

of the accuracy of the resulting solutions.




While there are many papers in the literature (e.g., see Refs, 1-8) dealing
with integral solutions of radiation problems, none of these addresses the im-
portant problem of determing the applicability and relative efficiency of the
various integral formulations and numerical procedures which can be employed to
obtain the desired solutions, Instead, most of these investigations are limited
to discussions of the potential advantages of the use of certain integral form-
ulations, various possible approaches for the numerical solution of the result-
ing integral equations, the nonuniqueness of the solutions of the integral
equations which govern the radiation problems, and potential means for allevi-
ating this nonuniqueness problem, The few papers (e.g., see Refs, 1-6 and 9)
that deal with the numerical solutions of specific problems are either limited
to two dimensional problems or three dimensional problems with simple boundary
conditions, such as perfectly reflecting surfaces, which greatly simplify the
analytical form and the numerical solution procedure, In the present investi=-
gation the analytical and numerical schemes are applied to problems in&oiving
general boundary conditions.

II. Theoretical Considerations.

In this section an outline of the development of the theory upon which the
calculations are based is presented, The basic integral representation of the
solution of the Helmholtz equation is rigorously developed in Ref. (10) and will
not be repeated here; however, derivations that are directly related to the pres-
ent investigation are presented in detail.

A, Formulation of the Integral Equation
The standard three dimensional Helmholtz formula for an external (radiation)

problem is7’10
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(See Fig.l.) where G(P,Q) is a fundamental solution of the Helmholtz equation;

that is:
kT (P,Q)

¢®9 = TFEY (2)

and k is the wave number, In Eq. (1) S%— represents an outward normal deriva-
. tive with respect to the body (i.e, inward with respect to the exterior region)

of the function with respect to the variable Q; i,.e.

3
anq q q 3)

where ¢ is the acoustic potential,

Introducing the modified admittance, Y, defined as

Y(Q) = %(191 / 0@

q )

Eq. (1) can be rewritten as

J] o@ { 3B _6,0) v@ } a5, = 470 (5)
S q
q

Thus, using Eq. (1) or Eq. (5), the acoustic potential @(P) at any point out-
side the surface of the body S can be determined if the acoustic potential on

the surface of the body ©(Q) and either its normal derivative é%ﬁgl (the acous-
q

tic velocity) or the admittance Y(Q) on the surface of the body are known.
If the point P is allowed to approach the surface of the body, Eq. (5) be=-

comes
RE 6(P.Q) S0@Q) -
J [ {o@ 2 o(r,0) L} a5 = 270(p)
sq 9 q (6)
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5
if the surface S is sufficiently smooth. Using Eq. (4), Eq. (6) becomes
T G(P
[oe@ { B 6,0 v@ } a5, = 2m0m) @
Sq 1

The integral Eqs. (6) or (7)* can now be solved for the acoustic potential on
the surface if either the acoustic velocity or the admittance is known at each
point on the body. Also if the acoustic velocity is known over part of the
body (i.e. the driving surface) and the admittance over the remainder, Eq. (6)
may be applied on the driving surface and Eq. (7) over the rest of the body,

Both G and its first normal derivative with respect to the variable Q,
which appear in the kernels of Eqs. (6) and (7), become singular when the
point Q approaches the point P on the surface (See Eq. (2)). It can be shown,
however, that the integrals are regular in spite of this singularity of the
kernels, and no analytical problems arise because of it, However, the singu-
lar kernels do present numerical difficulties which will be discussed in
Section III.

An analytical problem does arise in the solution of Eqs. (6) and (7) when
the wave number k, which appears in the simple source solution G (See Eq.(2).)
approaches a resonant frequency (i.e, an eigenvalue) of the related internal

7,11

problem, At these frequencies Eqs. (6) and (7) do not yield a unique solution.

B. The Uniqueness Problen
Since the uniqueness problem occurs only at certain wave numbers corres-
ponding to internal eigenvalues it might be suggested that tha nroblem be

simply avoided by considering only wave numbers which are not close to internal

* It will be noted here that Eq., (7) yields a homogeneous set of equations if
only the admittance is known. Thus to obtain a unique solution the acoustic

potential must be known on part of the body.




eigenvalues, This is not feasible, however, because: (1) if the body is truly
arbitrary in shape the intermal eigenvalues are not known a priori and the
corresponding internal problem would also have to be solved in order to de-
termine what wave numbers to avoid; (2) the integral equation is discretized
for numerical integration, which results in a system of algebraic equations,
so that there is no longer a specific value but a range of values at which
the coefficient matrix becomes ill-conditioned which results in large numeri-
cal errors;* and (3) the interval between successive eigenvalues decreases
with increasing wave number and it becomes impossible to stay 'sufficiently"
far away from the internal eigenvalues at high wave numbers (e.g., k on the
order of 10).

It has been suggested6 that one method to assure the uniqueness of the
solution is to obtain an overdetermined system of algebraic equations by com-
bining the system of algebraic equations generated from the standard integral
equation (e.g., Eq. (6)) with additional algebraic equations generated from
the integral relation

Jj{e@ ZER _ g 2L }dsq=o .
q

where the point P lies inside the surface S. There are two problems with this
approach. The first is determining the number of extra relations required to
"pick-out" the proper solution from the set of possible solutions of the non-

unique integral equation; and, the second is choosing the placement of the

* 1f the admittance is non-zero the internal eigenvalues of the problem are in
general complex, However, even if only real wave numbers are considered the
nonuniqueness problem still exists if the imaginary part of the complex eigen-

value is sufficiently close to zero.
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points which are used to generate the extra relations. As there is no known
procedure for choosing either the optimum number of extra relations or the
points from which they are generated, this method can not be relied upon to
give consistently good results,

Ursell12 has suggested that the uniqueness problem be avoided by the use
of a different fundamental solution (i.e., a different G function; see Eq. (2)).
Although the use of a different fundamental solution does not change the re-
sulting integral equations and analytically eliminates the uniqueness problem
rather elegantly, the function itself is difficult to construct numerically as
it entails the computation of infinite series. Thus the elegance of the method
is offset by the large increases in computer time and storage required for its
implementation, especially when considering three dimensional problems,

Another method for overcoming the uniqueness problem is based upon the
fact that a unique solution can be obtained by solving a modified integral
equation consisting of the original integral equation (6) and its differen-

tiated form7, that is

” 2
rJ { (Q) _a G_(_P,Q)_ e w M)} dsS =27 m
J * dn _dn an an q an
S P q P q P 9)
q

Equation (9) also describes the behavior of the acoustic potential on the sur-
face of the body, and it has a set of related internal eigenvalues which is
mutually exclusive of the set of related intermal eigenvalues of Eq. (6). Thus,

neither equation ever fails to yield a unique solution at the same k value as

the other, Using this fact, the following linear combination of Egs. (6) and (9)




e 3G(P.Q) _ @)
i {o(Q) = G(P,Q) s 7ds

= q
S q q

2
) 3 G(P,Q) _ 3G(FQ x@
g )L e 3n an, §%%, (10)
S

anpanq

« 27 (B * o @.‘ggl)
P

where @ is a coupling constant, should yield a unique solution for all values
of the wave number k.
Specifically, Burton and Miller13, have shown that the following relation-

ships exist between the coupling constant ¢ and the wave number k

Im (o) # 0 = k real or imaginary

Im (¢) = 0 - k complex (11)

which assures a unique solution, Unfortunately, the differentiated form of the
q > f O

integral equation (9) contains the following term

o E2 (P,Q)
J J ?Q) ancbi dSq
S P9 (12)

which is strongly singular as the point Q approaches the point P, Because of
its singular form this term cannot be directly integrated numerically.

Two methods for approaching this problem have been suggested, The first
solution is to '"regularize'" the singular component by an integration of the
entire equation14 (See Eq. (10).). This method requires an excessive amount
of computing time as an additional integration must be performed over the
surface of the body. The other approach suggests the use of a transformation

to interpret the singular integral15 (See Eq. (12).). In Ref., (15) two alternate




forms of the singular integral are put forth, The first requires further manipu-
lation to be of use as it contains yet another singular integral., The second
requires an excessive amount of computer storage space as it necessitates addi-
tional information that will allow the computation of the tangential derivative
of the acoustic potential on the two dimensional surface of the body. It must
also be noted that the acoustic potential is the unknown in most problems so

that some differencing procedure is required to generate the solution »(Q).

C. Treatment of the Singular Integral
In this section the first relationship developed in Ref, (15) (See pp.
1283-1284,) is used as a starting point for deriving the desired expressions.

It is shown in Ref. (15) that
< % 2
5 9 G(P.Q)
J ] o@ 55555 as
S P q
q

o

bl 0 (Q) (np.nq) Vo ¢ Vq G(P,Q) dSq
S

q (13)
+jjam>mpx%>.wpx%c0&nd%

S
q

n

- ) )o@ Ry« Yq % (n x 7, G(P,Q)) dS_
S

q

The first two integrals on the right hand side are regular; however, the third
is not, It is also shown that after some manipulation an alternate form of the

third term is

n

Jjbhxvqw@)].UExVPGWA)]d%
S
q

(14)
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This integral is regular so that the singular integral has been shown to
be equivalent to the sum of three regular integrals, It should be noted that
the first term in this integral, an X vq ¢(Q)J, is the tangential derivative
of the acoustic potential on the surface of the body alluded to in the previous
subsection,

An interesting property of this integral, Eq. (14), is that if the acoustic
potential ¢@(Q) is a constant on the surface of the body, the integral is zero

as in this case nq X vq w(Q) = 0. Since the two formulations are equivalent it

follows that

¢
- j J o@ ng . v x () x v G(P,Q) dS.

S
A (15)
pripss S1 g
= J J LB = Y w(Q)J . an x v, G(P,Q)J dsq
Sq
Writing the third integral on the right hand side of Eq. (13) as
- [ Jo@ 0@y n .9 x @ xv o) ds,
S
q
(16)
- f . P d
o® [ [ n .9 x ( xv cRQ) ds,
S
q

where @(P) is a constant with respect to the variable Q, we see that the last
integral is identically zero by setting ¢(Q) = 1 in Eq. (15).

Hance, the first term in Eq, (16) is not only regular but it can also be
readily integrated numerically. As point Q approaches point P the entire in-
tegral goes to zero., Thus it has been shown that the singular integral which

appears in the '"unique'" formulation of this problem can be expressed in the
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following form
2
P 3°G(P,0)
< j @@ dn_3n dSq
S
q

- r r -
IREIQ (n, « ) . v, 6(P,Q) dS
1 S
’ q a7

+[ [e@ @y xnp . v, x v, o) as,

S
q

[ [ e@ o] n v x @) x 9 c0) as_

S
q

which will be used in the numerical computations of this paper,

D, Computational Considerations
Because of the special form of the fundamental solution of the Helmholtz

equation, G(P,Q) = G(Q,P), (See Eq. (2).) certain simplifications can be made;

specifically

2 N
Vp - ¥ G(P,Q) = - Ya G(P,Q) =k~ G(P,Q)

(18)
v A ] =S G(P =0
o *% (P,Q) 4 * % (P,Q)
Using the above relationships Eq., (17) can be rewritten as follows:
. aZG P
[ T o) B 45
© o cn_cn q
S
q
= - [ To@ (. n)x)? 6,0 ds
Jo° P g gl (19)
S
q

)] @ - o] ny vy x m x v 6@,0) as,
S

q




To reduce Eq. (19) to a form more amenable to numerical computation it is

convenient to let ©»(Q) =1 so that

f f Sn—ca%‘g’ asy
(20)
& jf . nq)(ik)z o0 ds,

S
q

Using Eq. (20) the left hand side of Eq. (19) can be rewritten as

2
i 9 G(P
| [e@ 8620 as_
! P°q
q

- [T le@ - o»] -gf,—ﬁg,%;ﬂ s, (21)
S

rr T
-@(P)J J (np- nq)(lk) G(P,Q) dSq

S
q

If Eq. (2) is employed and the indicated differentiations are performed

the right hand side, Eq. (21) can be rewritten in the following form

S1kT (P,Q) Wil 32323 3 |
jf'_qa(Q) - co(P)] TI(P,Q) l.(lk) g r(ll”Q) § [r(P,Q)]Z J

dr(P.Q) 3r(P,Q) by Tty APORS SN
on_ ‘e R L™ r(P,Q)]}dSq

v p eikr(P,Q) . 2
- ©o(P) J J -;?FFSF— (ik) (np ® nq) dSq
Sq (22)

where 28 _ =

an -y £(P;Q) . HP' Using the results developed in this section

LZ
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the formulation of Burton and Millerl3 (See Eq. (10).) reduces to

ikr(P,Q)

. . 1 3z (P,Q)
JJo@ e e o0, S
Sq
1kr(P Q) 2
- o P .H S W0 o e
1kr(P Q) 3ik
it j J Lo@ - o) | S {[wo® - Sy + et Q)] ]
ar(P.Q) ar(rQ) _ "p°"q . 1
= an @0 - e } =
P q
. ikr(P,Q)
- J" J 3 St gy
on r(P,Q) q
S q
q
ikr(P,Q)
e 2 . 1 or(P,Q)
s 50 Y -ree ) T, e
S q P
q

]

2 (@(P) + b‘aﬁnﬂ)
p (23)

The above equation, although it may appear more complicated, is actually
considerably simpler from a numerical point of view than solving Eq. (10) with Eqgs,
(}18) and (14), In surmary, the above formulation of the sound radiation problem

provides unique solutions at all wave numbers k and contains no singular integrals,

I11, Numerical Considerations,
To determine the radiated sound field genmerated by an arbitrarily shaped
three dimensional body, Eq. (23) must first be solved for the distribution of

the acoustic potential on the surface of the body, ®(Q). Then this data needs

— o —




14

to be substituted into Eq. (1) to determine the radiated sound field. Inspection
of Eq. (23) indicates that all of the integrands appearing in this equation are

both oscillatory and singular due to the factor elkr(P’Q) which appears in

r(P,Q
each, Therefore care must be exercised in the numericél)representation of these
kernels,
When considering the numerical evaluation of an integral on an arbitrary
two dimensional surface, such elegant computational methods as Gaussian quad-

57 (which has been found by the authors of this paper to yield accurate

rature
results in two dimensional sound radiation problemsls) cannot be used in the
numerical representation of the kernels. The only simple approach available to
obtain a more accurate representation of the kernels is to evaluate them at
more points on the surface of the body. Unfortunately, this is usually accom=-
panied by an attendant increase in the size of the coefficient matrix which
must be solved to obtain the acoustic potential, The computer time required
to solve this matrix goes up roughly as the square of the number of unknowns
for most methcds of solution (e.g., Gauss-Jordan reduction),
Two considerations enter into the determination of the size of the coeffi-
cient matrix: (1) the heuristic determination of the number of points required
ont the surface of the body to represent the acoustic potential to the desired
accuracy; and (2) the computer time and storage space available to solve the
coefficient matrix resulting from the discretization of the integral equation,
The storage space available is usually much smaller than the number of
points required for the accurate evaluation of the singular, oscillatory kernels,
Lan view of the above considerations the following scheme is used to obtain
a numerical solution, First, the surface of the body is divided into a number
of area elements which corresponds to the number of points where the acoustic

potential is to be calculated on the surface., It has been determined that

better results are obtained in general if the area elements are 'regular" (i.e,

——————————

- —— - —
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not too elongated in any direction), although the exact shape is unimportant,
and they should be of roughly equal area. A point is then chosen in the '"center"
of each area element (usually the centroid of the plane figure projected to the
body surface). These points will be denoted as calculational points (i.e., P
points) as this is where the acoustic potential will be calculated. Next, each
of the original area elements is subdivided into a number of smaller area ele-
ments, the sum of which corresponds to the number of points where the singular,
oscillatory kernels must be evaluated on the surface of the body to assure their
accurate representation. A point is thus chosen on the surface of the body in
the '"center" of each of the smaller area elements as before. These points will
be denoted as computational points (i.e. Q points) since the kernel functions
are computed there,

The calculational points may or may not be a subset of the computational
points on the surface of the body. If they are a subset some computer space
may be saved; however, the computational point must be avoided when it corres-
ponds to a calculational point (i.e., when the point Q corresponds to the point
P) since the kernels are then singular. Thus each term in the coefficient matrix
is now the sum of a number of terms generated by a number of evaluations of each
kernel function,

Since the integrals are all regular a better approximation may be obtained
by placing computational points closer to the calculational point when one is
close to the singularity of the kernel function. Thus the computational area
elements may be further subdivided to obtain a more accurate representation of
the integral about the point P,

An illustration of how the above procedure is accomplished is presented

below using Eq. (23) which is rewritten in the following more compact form

v " %
—— . - — )
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J | e@ a@,) as + o | [ B0 a5,

S S
q q

+J ] ch(Q) - @(P)_l C(P,Q) dS_ - 2 my(P) (24)

P
|

=+ | | e as,
S

q

where the proper form of the integrands can be readily obtained. Next, Eq. (24)

is discretized as follows:

n n
L 9(Q) ARQ) ASy + 9(B) I B(P,Q) A5,
Q=1 Q=1
Q#P Q#P
n -
+ 2 [e@ - o®] c(2,) A5,
Q#P (25)
m =
+o(®) T [A(R,@ +B(2,9)|AS -2 7@
q:
n m ;:: P
= £ D(P,Q) AS.+ T D(P,9) AS +2nma =
Q=1 Q q=1 q an
Q#P

B Besind

where N is the number of calculational points; n is the number of computational

points (not including the subdivided element about P), and = is the number of

computational points in the subdivided element., In the above representation the

normal component of the acoustic velocity, &(Q) , on the body is assumed known
on,

and is therefore included in the integrand D(P,Q). Additional input data required

to obtain a solution include: (1) the coordinates of each computational point;
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(2) the area associated with each computational point and (3) the outward
normal vector at each computational point. The information required at the
calculational points is included in the above.

If the resulting matrix of coefficients is large, there are many iterative
schemes which can be employed in its solutionlg; however, if the matrix is small
Gaussian elimination with back substitution may be used, Once the acoustic po=-
tential is determined on the surface, Eq. (1) may be used to generate the
acoustic potential at any point in the field surrounding the body. In this com~
putation the point Q never coincides with point P and the integrands are never
singular; however, they are still oscillatory and care must still be taken to
get an accurate representation of the integrals.

Due to the availability of analytical solutions for comparison purposes,
the developed numerical procedure has been applied to predict the sound radi-
ated by a sphere. However, it should be reiterated that no advantage v-as taken
of the sphere's relatively simple geometry (i.e. its symmetry) in the numerical
computations. Once the needed input data was generated it was treated like any
other arbitrarily shaped three dimensional body. The sphere was subdivided into
80 triangles by first taking an icosahedron (a three dimensional figure whose
surface consists of 20 equilateral triangles) inscribed in a unit sphere and
dividing each triangle into four others (See Ref. (1), pp. 1630-1631,). This
was accomplished by finding the midpoint of each side of each triangle and pro-
jecting it to the surface of the sphere as shown in Fig., 2. The centroid of
each triangle was then found and also projected to the surface of the sphere,
These 80 points correspond to the previously described calculational points.

To obtain the computational points this method was simply repeated three
more times yielding 5120 points. Around each calculational point the three sur-

rounding triangles were then divided once more, and at the calculational point
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itself the triangle was divided twice more as shown in Fig. 3. The spherical
area was then computed for each computational triangle (i.e. the sum of the
areas of all the computational triangles is 4 11, the surface area of the unit
sphere), This yielded all the geometrical input data required; as; for a unit
sphere the coordinates of the computational points and the elements of the
outward normals are the same in rectangular coordinates. |
IV.Results and Discussion. 1

In the calculations performed in this study the surface of the radiating

sphere was divided into two parts. On one part (the driving surface) the normal
acoustic velocity, %ﬁ ,» was specified while on the other part (the admictance
surface) the modified admittance function Y, defined by Eq. (4), was specified
indicating either sound absorption or amplification by this part of the surface
(See Fige. 4.). The sphere was chosen for this study as exact analytical solutions
can be obtained for comparison with the numerical solutions obtained by solving
the integral equations.,

Using the well known separation of variables technique it can be shown that

the acoustic potential for the sphere can be represented as follows

2.3n  d" cos n
- - 2 — Y
¢(r,e,g)— hm(g) {(1 ) d,nn %m(q) } {sin n g (26)
either on or in the field surrounding the surface of the sphere, In the above
expression T = cos 9, { = kr, hm is a spherical Hankel function of order m,
and %n is a Legendre polynomial of degree m, It should be noted that when
n = 0 all § dependence drops out so that the problem becomes axi-symmetric,
It can also be shownzo that the acoustic potential for a piston vibrating
in an otherwise hard (i.e. Y = 0) sphere is given by
) 1

® - ¢ B
- . SN

o(r,0,8) =( an /Zk) mEO me-l(T\o) 2 Pm+1 (TL)) J{ .
d¢
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both on the surface of the sphere and in the field surrounding it. In Eq. (27),
ao denotes the edge of the piston set in the sphere, a is the radius of the
sphere, go = ka, nb = cos 80, P_1 (ﬂb) =1 (vhen m = 0), and the remaining
quantities are the same as those appearing in Eq. (26). The solution is al=-
ways axi-symmetric as there is no E dependence. Also, both solutioms (i.e,
Eqs, (26) and (27)) represent radiated sound fields as they satisfy the
necessary radiation conditions when r - =,

In all the calculations performed in this study the acoustic velocity
is specified on a quarter of the sphere's surface as shown in Fig. 4. Also,
the sphere is of unit radius (i.e. a = 1) and the coupling constant o, re-
quired in applying the method of Burton and Miller, has been taken as the
pure imaginary number i as k is a real number (See Eq. (11).).

The radiative fields computed in this study are summarized in Table I
where the assigned values of m and n describe a specific solution (See Eq. (26).).
For each investigated case Table I contains the exact solutions on the surface
and far fields, the input boundary conditions derived from the known exact
solution, and the average percent error obtained by comparing the exact and
computed solutions,

To check the numerical approach and computer code Case # 1 was investigated
initially (See Table I,). Under these conditions the analytical solution for the
%% and Y).

A comparison between the numerical and exact solutions for the amplitude |p| of

surface potential, ¢ = ho(kr), is a constant as is the input data (i.e.

o
the acoustic potential on the surface of the sphere and in the far field is
presented in Fig, (5) where excellent agreement between the two solutions is

noted, The computation of the surface solution required three minutes of computing

* The amplitude was chosen for comparison as both the real and imaginary parts

of the acoustic potential show similar trends and errors.

e ——————— i S ———— Y T
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time on the Georgia Tech CDC Cyber 70 model 74 computer. This time is indicative
of all the cases considered in this study, The far field distribution of the
acoustic potential was calculated using both the exact surface distribution

and the calculated surface distribution. The far field calculation using the
exact surface distribution was done as a check on the computer code and the
results agreed with the exact solution (obtained from Eq. (26)) to seven sig-
nificant figures in both the real and imaginary parts. To calculate both distri-
butions simultaneously, under two minutes of computing time was required which
is also indicative of all the cases run,

The second investigated solution (See Case # 2, Table I,) was the same
solution as Case # 1 but with a wave number k = 7 which coincides with the first
internal eigenvalue of the sphere, This case was run to check the validity of
the theory, Again the solution for the surface potential and the input data are
constants both on and off the surface of the sphere, A comparison between the
computed and exact solutions on the sphere surface and in the far field are pre-
sented in Fig. (6). Examination of this figure indicates that in this case the
agreement is not as good as in Case # 1, although the average error was still
under ten percent., The far field distribution of the acoustic potential was cal-
culated as before, Employing the exact surface distribution the results compared
with the exact far field solution to four significant figures in both the real
and imaginary parts. In examining Fig. 6 it is interesting to note that there
was no increase in the error from the surface distribution to the far field, It
was found that there was no significant increase in error from the surface to
the far field distribution in any of the cases run,

The exact solution for Case # 3 (obtained from Eq. (26) with the data in
Table 1) is ¢ = hl (kr) cos 8. In contrast to the previous cases this solution
is O dependent, A comparision between the exact and numerical solutions on the

surface of the sphere is presented in Fig. 7, and a far field comparison is pre-
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sented in Fig. 8. Examinatior of the data shows that in this case the error
was actually reduced in going from the surface to the far field. Furthermore
in the far field, the calculated surface distribution gives better results
than does the exact surface distribution,

The next case investigated (Case # 4) was run at the second intermal eigen-
value of the sphere, k = 4,49340946., The results for the acoustic potential on
the surface of the sphere are presented in Fig. 9. As can be seen the results
deteriorate somewhat at an internal eigenvalue of the problem, It is interest-
ing to note that the error increases with 6 and it reaches its maximum value
at g = 1800, the center of the admittance surface, The results for the far
field are presented in Fig. 10. All of the cases considered so far were axi-
symmetric, that is, there was no £ dependence; a property that was also retained
by the developed numerical solutions.

This next case (Case # 5) is truly three dimensional as there is a g de-
pendence in the solutions. Referring to Eq. (26) and Table I the exact sélu-
tion on the surface of the sphere is found to be © = hl(kr) sin @ sin §. The
average percent error was not calculated in this case due to the zeros which
appear in the exact solution, but the errors remained small (i.e. wunder ten
percent), The far field distribution of the acoustic potential was calculated
and no increase in error was detected.

In the next three cases a hard sphere (i.e. Y = 0 on the admittance sur-

foles)
on

The exact solutions for these cases can be obtained from Eq. (27). In these

face) with a unit driver (i.e. = 1 on the driving surface) was considered.
studies the wave number k was varied to determine the value of k at which the
accuracy of the solution deteriorates for a fixed number of 80 calculational

points that was used in these numerical studies.

----- R S ——— ——
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The solution for Case # 6 where k = 2, are presented in Fig, 11 for both
the surface distribution of |@| and the far field solution. In this case the
far field is considered to be at kr = 100,

In this next case (Case # 7) the wave number is increased to k = 5, As
can be seen from Fig. 12, the error is still under ten percent on both the
surface of the sphere and in the far field (i.e. kr = 100). When the wave
number is increased to k = 10 (Case # 8) the error becomes rather large. The
average error in the calculation of the surface potential is sixty percent,
So it can be seen that there are not enough calculated points to accurately
represent the potential function, ¢. The far field is calculated at kr = 100

and the error drops a bit but it still remains high at twelve percent.

V. Summary.

In summary, a solution approach has been developed in this paper which
may be used to yield a unique solution for the distribution of the acoustic
potential on the surface of an arbitrary three dimensional body at all values
of the wave number, Also, a numerical scheme was developed to solve the equa=
tion accurately and efficiently, Computer programs were run to verify the
applicability of the developed solution method and to find its limit of accu-
racy for a fixed number of points, The procedure was found to be both accurate
and versatile as the computer code required no major modifications to handle

the various boundary conditions imposed on the surface of the body.
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PREDICTION OF THE SOUND F1ELD RADIATED FROM
AXISYMMETRIC SURFACES

¥* *k
W. L. Meyer, W, A, Bell, and B, T, Zinn

Fdek

School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

A peneral analytical method for determining the
radiated sound fields from axisymmetric surfaces of
arbitrary cross section with general boundary con-
ditions is developed, The method is based on an in-
teyral representation of the external solutions of
the Helmholtz equation valid at all wave numbers,
The axisymmetric formulation of the problem reduces
its solution to the numerical evaluation of line
integrals by Gaussian quadrature, The applicability
of the solution approach for both a sphere and
finite cylinder is demonstrated by comparing the
numerical results with exact analytical solutions
for both discontinuous and continuous boundary con-
ditions,

L. Introduction

o reduce the noise radiated to the community
from turbofan inlets, the effects of sound suppres-
sion material in the inlet and the spatial distri-
bution of the sound source on the radiated sound
levels and patterns must be determined. Analytical
techniques for predicting these effects must be
capable of dealing with general axisymmetric peome-
tries and complicated boundary conditions which are
encountered in multiply-lined inlets, To determine
the radiated sound field, an additional requirement
is that the methods be applicable to infinite do-
maing, The objective of this paper is to develop a
general analytical method for determining the radi-
ated sound fields from axisymmetric surfaces of
arbitrary cross section and with general boundary
conditions.

he method used in this investigation is based
on an integral form of the solutions of the Helm=-
holtz cquation.1'6 With this formulation the acous-
tic potential anywhere external to the surface can
be found once the potential distribution on the
surface is known. Thus, to determine the radiated
sound field the problem reduces to the determina-
tion of the distribution of the acoustic potential
on the two-dimensional surface of the geometry un-
der consideration instead of solving the Helmholtz
equation in the surrounding infinite three dimen-
sional domain,

It has been previously shownl =3 that when ap=
plied to exterior sound radiation problems the solu=-
tion technique fails to produce unique solutions at
frequencies corresponding to interior eigenvalues
of the geometries under consideration, Unless spe-
cial precautions are taken, straight-forward numeri-
cal solutions of the developed integral equation at
frequencies close to the eigenvalues of the internal
problem produce large errors. A technique proposed
by Burton and Miller® for avoiding this uniqueness
problem and the associated numerical errors is used

" Assistant Rescarch Lnginecr, Member AIAA
#% Rescarch Engineer, Member AIAA
*#%% Repents' Professor, Associate Fellow, ALAA

in this investigation. This technique involves a
reformulation of the '"classical" integral equation
and the solutions obtained are valid at all frequen-
cies,

The resulting integral equation for the surface
acoustic potential is solved numerically and, for
axisymmetric geometries, the equation reduces to
the evaluation of a line integral. Thus, the axi-
symmetric case can be reduced to an equivalent one-
dimensional problem., This equation is discretized
and the resulting system of algebraic equatiouns is
solved using complex Gauss-Jordan elimination, Since
the coefficient matrix involves the free space
Green's function, which becomes singular as two
points on the surface approach one another, numeri=-
cal techniques are presented which can deal with
these singularities and yield accurate results.
Gaussian integration is used to increase the accura-
cy of the solution without significant penalties in
computer storage and time requirements, The applic-
ability of the integral formulation and the accuracy
of the numerical techniques are demonstrated by
computing the surface and far field distributions
of the acoustic potential on both a sphere and a
finite cylinder, The numerical results are compared
with known exact solutions generated by the separa-
tion of variables technique, Surfaces with spatially
varying forcing functions and admittances are con-
sidered, for different tangential modes, to evalu-
ate the capability of the integral approach to
handle boundary conditions of a general nature,
With the sphere, agrcement between computed and
exact results is to three significant figures, For
the cylinder agreement is to two significant fig-
ures, The effect on the accuracy of discontinuous
boundary conditions involving nonzero admittances
over the surface and of the corners encountered in
the cylindrical configuration are also presented,

IT. Theory

In this section the general three dimensional
integral representation of the solutions of the
Helmholtz equation is developed for application to
radiation problems, This particular formulation
yields unique solutions at all frequencies and does
not have strong singularities which are difficult
to handle numerically. The general integral equa-
tion is then specialized for axisymmetric geome=
tries, A more detailed development is given in Ref.
5¢

General Theory

Beginning with the three dimensional Helmholtz
equation which governs the spatial dependence of
the acoustic field for sinusoidal oscillations

o+klg=0 a)

where @ is the acoustic potential and k is the wave
number, The standard integral representation of the
exterior solutions is found to bel,6
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3
fhe term ;:— represents an outward normal deriva-
tive with™ q respect to the body as shown in Fig.
1; that is
Q) - -
=v_ 9@ °n
3n q { q 3)

Also, G(P,Q) is a fundamental three dimensional
solution of the Helmholtz equation and is taken to
be the free space Green's Function for a point
source® defined as

L_ikr(l’.Q)
G(P o
@R = “)
From Eq. (3), if the acoustic potential and the
normal acoustic velocity X (Q) are known at each
3an

point on the surface of the body then the acoustic
potential may be calculated anywhere in the exterior
domain.

To solve for the surface potential, the point P
is moved to the surface of the body. Equation (2)
then becomes

" Q) 28R | Q) =
1] 6@ 5 G(P,Q) 5 )dSq 2 o(P)

Sq q q )

if the surface of the body is sufficiently smooth.
Introducing a modified admittance function defined
as

- 20Q) fo@)
A= ang (6)

Eq. (5) can be written as

il 3G(P,Q) £.0
JJ o (@Q) dsq-‘; Je@ )G(P.Q.)Y(Q)dsql

3n
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S S
q a1
(7)
= 2nge) + | | 2 gpq) as
J an qp
S q
92
where b= : + j .
J
q ql 9,

If either the acoustic velocity or the admittance is
known at each point on the surface of the body then
the acoustic potential may be calculated at each
point using Eq. (7).

Unfortunately this equation does not yield
unique solutions when the wave number k is an in-
ternal eigenvalue of the body under consideration,
Since these eigenvalues are not known a priori for
general bodies the formulation cannot be relied
upon to give consistently good sezults. There are
many papers in the literature?s3s dealing with
this problem, The relative merits and shortcomings
of the methods employed are discussed in detail in

Ref, L.

The soundest approach from an analytical point
of view is given by Burton and Miller® who have
suggested the use of the differential forms of Eq.
(5) which governs the spatial dependence of the
acoustic velocity,

- 2 5 .
2n 20(B) _ o(Q) 8RR 36(P,Q) 20Q) |46
4 b 3n 3n an an J 9
P s P 9 P q
q

This equation can als be solved for ©(Q) once the
normal velocity or admittance is specified at the
surface, However, this equation has its own set of
associated eigenvalues at which unique solutions
cannot be obtained., Burton and Miller suggest tak-
ing a linear combination of the two equations to
obtain

LT 3G(P,Q) X Q) .
) \.(Q) = G(P,Q) =3 )dsq
S q q
q
= -2 )
‘ 3 G(P,Q) _ 3G(P,Q) 3(Q)
O J J\w(Q) 3n_3n " 3n 3n ) a8
S P g p q
q

(8)

Since the two sets of associated internal eigen-
values are mutually exclusive the linear combination
of equations should yield unique solutions if the
complex coupling constant o is properly chosen. It
is shown that o must meet the following restrictions
to guarantee that Eq., (8) yield unique solutions
Im (o) # O k real or imaginary

9)

Im (¢) =0 k complex

A problem arises in the numerical solution of Eq.
(8) as the third term on the right hand side is
strongly singular in its present form as the point
Q approaches the point P on the surface of the body.
Meyer, Bell and Zinn” have shown that this diffi-
culty can be overcome by the proper interpretation
of this singular term. Employing a vector transfor-
mation’/ and taking the Cauchy Principle Value Eq.
(8) is shown to be equivalent to

b 26(P,Q) _ 2(Q)
| (o 2 o(r,Q) 2) a5
S q
q
ey 2
to ! (0@ - o)) 2 g5
J oo anpanq q
5q (10)

- ao®) | | (e 007 GRLQ) ds,

S
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o J. J T3 an dSq 27 (o(P) + o an




All of the
therefore

terms in Eq., (10) are now regular and
are directly integrable; however, all the
integrands are oscillatory and singular so that care
must be taken in their numerical approximation,

Axisymmetric Formulation

When dealing with a body of revolution as shown
an axisymmetric formulation of the prob-
This being the case an element

in Fig. 2
lem is advantageous,
of area becomes

dS = r dS d¢
q

where S is the distance along the perimeter of the
surface in the r-z plane.

Assuming an acoustic velocity distribution of
the form

2 = v(S) cos m & (12)
on
and defining a potential function
2 B
fiai= cos m & (13)
Eq. (10) becomes
5(S,) 26(P.Q) cos m ds
J v Q a3n
S q
q
2
- ] P i . ds
¥ (SP) J J 6(B,Q) (k) (np nq)
S
q
' 0 1 QZGSP,QZ
o ||| &S 8 =% d
o)) P R G H RS ST, h
S P 9q
q
(14)
= V(Sq) G(P,Q) cos m ﬁq dSq
S
q
Sde el 3G(P,Q)
o7, 1) V(Sq) = cos m gq dSq
S
2 [ S ]
=2mn| ¢ + S
E ( p) a v( p)J
In the above equation “p has been assumed to be
zero so that cos m ép =1,
Now, three sets of functions are defined:
Influence Functions
15
(8_,8 e 2 | B d
L« p* q) 3 G(P,Q) cos m %4 eq
(15)
o7t

- M 2G6(P,Q)
L, (5,,59 2,,.‘0 o,

Kernel Functions
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P q Jo oM q q
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(16)
N N I
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Forcing Functions
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Substituting Eqs., (15)-(17) into Eq. (14) gives
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= 2n{es) + « v(Sp)“

where £ is the length of the generating line of the
surface of revolution. The S-0 coordinate directions
have now been effectively uncoupled so that the
problem has been reduced to the evaluation of line
integrals in the coordinate directions on the sur-
face of the body. This formulation does not restrict
the form or type of boundary conditions on the body;
it merely assumes that the boundary conditions can
be represented by « sum (expanded in a set) of tan-
gential modes,

IIL. Results

Numerical results have been obtained for a
sphere and cylinder using the numerical technique
described in Ref, 9, Basically, this method con-
sists of first specifying the T1-z coordinates and
the normal vector at each point on the surface.
From these quantities the distances r and the nor-
mal derivatives & __ can be obtained. The integral
in Eq. (18) is anq then separated into n inte-
grals taken over subintervals of length £/n. The
acoustic potential is assumed constant over each
subinterval and the integrations are performed nu-
merically using a four-point Gauss-legendre quadra-
ture in the t-z plane., A twenty-point Gauss- Legen-
dre quadrature formula is used in the circumferen-
tial direction,

Exact results were obtained using separation of
variables,® To eliminate the need for evaluating
the resulting infinite series, the normal velocity
and admittance distributions were selected so that
only one term in the series remains,




To investigate the effect of the coupling con-
stant 5 in Eq. (18), the surface potential distri-
butions were obtained for 4 = 0, i, and i/k for
twenty points on the sphere, The exact solution
assumed for this case is

ikr(P)
8

©(P) By

(19)

where r is the distance from the origin to a point
P on the surface. As shown in Fig. 3, with o = 0
the computed magnitudes of the acoustic potential
are in error by 12 per cent at wave numbers close
to the internal eigenfrequencies of n, 2r and 3r.
These results are those that would be obtained from
Eq. (5). The relatively larfc errors are expected
from the analysis of Burton' and from previous in-
vestigations using Eq. (5).2:5 Burton proves that
setting the imaginary part of « nonzero guarantees
unique solutions when Eq. (18) is used, Although
the maximum error is reduced for » = i to less than
4 per cent when the nondimensional frequency k is
less than seven, significant errors are still evi-
dent at the higher frequencies as shown in Fig. 3,

In this study consistently good results are ob-
tained only when ¢ = i/k. In Fig. 3, the computed
and exact results with o = i/k agree to three sig~
nificant figures. The reason for this behavior is
currently under investigation; however, for all the
cases presented hereafter this value of o is chosen
and the exact surface distribution is given by Eq,
(19) when m = 0,

A problem of more practical importance is the
finite axisymmetric duct since this surface approxi-
mates an engine configuration, The surface potential
distributions are presented in Fig. 4 for a zero
admittance everywhere on the surface. The velocity
distribution is specified over the entire surface
and the potential given by Eq. (19) has a magnitude
independent of frequency and a phase linearly pro-
portional to the frequency. In Fig. 4 the magnitude
and phase are plotted against the distance along
the perimeter S, The largest errors in the magni-
tude of the potential of about 10 percent occur on
the ends of the cylinder and at the corners. The
results at the ends can be improved without increas-
ing the number of points by area weighting rather
than by taking equidistant points along the perime-
ter. The errors at the corners are caused by the
discontinuous normal derivative in going from the
cylinder to the end. The errors in the phase are
less than four per cent in all cases, The errors in
magnitude increase with increasing frequency, but
even when k = 10 the numerical results are within
10 per cent of the exact solutions,

In most practical problems the boundary condi-
tions are discontinuous with the acoustic velocity
or potential specified over part of the surface and
the admittance over the rest, To determine the ef-
fect of the discontinuities on the numerical results
4 cylinder with the velocity specified on the ends
and the admittance specified in the center was in=-
vestigated and the results are presented in Fig. 5,
Although the errors of the numerical results for
this case are increased compared with the errors
shown in Fig. 4, the errors are within 10 per cent
for values of k less than 5, However, when k = 10
errors of up to 40 per cent in the magnitude of the
potential are encountered close to the discontinu=-
ity in the boundary condition., This result suggests

that more points need to be taken at higher frequen-
cies with discontinuous boundary conditions present,

At higher tangential modes, the variation in
the circumferential direction behaves as cos m =
where m = 0,1,2,.... To check the numerical integra-
tion scheme in the circumferential direction, the
surface acoustic potential was computed for m = 1
and m = 2, The results are presented in Fig. 6 for
k = 2 with the velocity specified and the admittance
zero everywhere on the surface, The computed and
exact results are in agreement to within two per
cent for both m =1 and m = 2,

It has been shown® that once the surface poten-
tial has been accurately computed, the far field
can be determined to at least the accuracy of the
surface potential. This result is confirmed by the
data presented in Fig., 7 for a cylinder with the
velocity specified everywhere on the surface at
k = 2, The results at 20 vadii from the surface are
in agreement with exact results to within one per
cent even though the surfacs “rrors at some points
is above two per cent, Data .1g. 8 show that
accurate results are obtained at distances greater
than one integration stepsize from the surface. At
closer distances errors from the numerical evalua-
tion of the singularity in the Green's function de-
fined by Eq. (4) leads to large errors,

IV, Summary and Conclusions

An integral solution of the Helmholtz equation
is developed for use in acoustic radiation problems.
Unlike previous formulations which give poor rasults
at frequencies corresponding to eigenfrequencies of
the surface under consideration, the formulation
used in this study is valid at all frequencies. The
surface potentials ccmputed numerically for a sphere
and cylinder using 20 points along the perimeter
are accurate to within ten per cent for noadimen=-
sional frequencies ka of from one to ten where k is
the wave number and a is the radius of the sphere
or cylinder, For discontinuous boundary conditions,
the numerical and exact values are in agreement to
within 10 per cent for ka <5, At higher frequencies
the results are as much as 40 per cent in error at
the point of discontinuity which suggests taking
more points in evaluating the integral Helmholtz
equation to increase the accuracy when discontinu-
ous boundary conditions are specified, At distances
greater than the numerical integration stepsize,
the far field results are at least as accurate as
the corresponding surface potential solutions.
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Figure 1, General Description of the Acoustic
Radiation Problem

Figure 2, Cylindrical Surface Geometry.
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Predicting the Acoustics of Arbitrarily Shaped Bodies
Using an Integral Approach

William A. Bell,* William L. Meyer,T and Ben T. Zinn}
Georgia Institute of Technology, Atlanta, Ga.

An integral solution of the Helmoltz equation is developed for predicting the acoustic properties of arbitrarily
shaped bodies. With the integral formulation, the acoustic potentials at the surface are solved independently of
the internal acoustic field which, effectively, reduces the dimensionality of the problem by one. Considerable
reductions in computation time and storage requirements are thus achieved. Efficient numerical techniques for
solving the resulting algebraic equations are presented. Numerical results obtained for the two-dimensional

problems of a circle and a rectangle agree to within one percent with av

PANT

exact solutions. The modes of a

star-shaped configuration and a duct with a right-angle bend are also determined to demonstrate the ap-
plicability of this method to complicated geometries and general boundary conditions. The acoustic properties
of a sphere are investigated using an axisymmetric formulation. With the axisymmetric formulation the
numerical and exact results agree to three significant figures.

I. Introduction

HE prediction of the acoustics of arbitrarily shaped

bodies has a variety of applications in aerospace
engineering. Among them are the determination of the in-
ternal and radiated sound fields from airbreathing propulsion
systems and the investigation of the stability limits of rocket
combustors. These studies are concerned with obtaining
solutions to the Helmholtz equation, which is derived from
the wave equation when a sinusoidal time dependence is
assumed and which describes the spatial dependence of the
oscillations. This equation is included in most standard texts
on differential equations of mathematical physics (Ref. 1, Ch.
11) and has been extensively studied in both differential and
integral form. The differential form is currently the most
widely used.

In differential form, solutions of the Helmholtz equation
can be obtained by separation of variables.'? This method
involves series expansions of the solutions in terms of
eigenfunctions of the system. Although this technique has
been successfully applied to several practical probler:s in duct
wave propagation,'” it has the following limitations: 1) the
series expansions often involve special functions which are
difficult to compute; 2) at high frequencies and at the
boundaries the series are slowly convergent—therefore, a
large number of terms in the series must be retained to ensure
accurate results, which often requires excessive computation
time; 3) this method can only be used with special coordinate
systems and boundary conditions for which the separation of
variables can be applied. At present only eleven suitable
coordinate systems are known (Ref. 1, p. S13ff).

For arbitrarily shaped bodies, the differential form of the
Helmholtz equation can be solved by writing the equation in
terms of finite differences (Ref. 1, p. 703ff). Unlike
separation of variables, this technique is not limited to ducts
with simple geometries. A typical application of finite dif-
ferences is given by Wynne and Plumblee'® who solved for
the transverse eigenvalues and eigenfunctions of an annular
duct with lined walls. This technique involves the
simultaneous solution of the acoustic potential value at every
point within the duct. Once the potential values are known,
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the acoustic pressure and velocity can then be determined. To
obtain sufficient accuracy, fine grid sizes must be used which
necessitates large computer storage requirements. This
drawback was noted by Baumeister, '’ Baumeister and Rice, '*
and Alfredson'® who used this technique in studies of duct
wave propagation. Because of the storage requirements this
technique has mainly been applied to two-dimensional
problems. For three-dimensional problems numerical
methods capable of handling large matrices must be used
which require considerable computer time and computational
effort.'® This technique is also impractical in radiation
problems which involve infinite domains.

To avoid the limitations of the differential formulation, the
integral approach is employed in this study. The integral
approach has been successfully applied to a wide range of
acoustic problems. In determining the sound radiation field
from vibrating surfaces, integral techniques have been widely
used.'*'® For example, Chen and Schweikert'*'® employed
this method to determine the radiation sound patterns for
three-dimensional shapes with mixed boundary conditions.
To check the accuracy of the results, they computed the
radiated field produced by a piston vibrating or a sphere. For
this problem an exact solution exists ' and compares favorably
with the numerical results. The integral formulation is also
used to solve the problem of scattering by arbitrary
shapes.'*?' Banaugh and Goldsmith, for example, used this
technique to investigate the effect of surface shape'’ on
scattered sound fields. By applying this method to a circular
cylinder, for which exact solutions are available,** and
comparing the exact and numerical solutions, Banaugh and
Goldsmith demonstrated the accuracy of the integral solution
scheme. Although this method is capable of handling mixed
boundary conditions, only surfaces with rigid boundaries
were considered in Ref. 19. The effect of mixed boundarv
conditions was included in studies by Liu and Martenson?*
and Quinn?® of the internal acoustic pattern of lined ducts
with arbitrary shapes. Comparison of the theoretical
predictions with experimental data showed generally good
agreement. Unpublished work by Zinn and Gaylord®*
demonstrated the applicability of the integral formulation for
the determination of the natural frequencies and modes for
two-dimensional shapes. In this study the accuracy of the
technique was determined by comparing the natural
frequencies and mode shapes with available exact solutions
for a two-dimensional cylinder with rigid walls. The
agreement is to within four decimal places which is two-
orders-of-magnitude more accurate than previous results

e
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obtained by solving the differential Helmholtz equations
using finite differences.'’ In another study by Tai and
Shaw, ** the integral method was applied to a right triangle.
The resulting eigenfrequencies compared with exact solutions
to within 5% and the maximum deviation between the
numerically computed and exact potential fields was less than
1%.

To demonstrate the accuracy and the versatility of the
integral solution technique, results are obtained for several
acoustic problems involving a variety of geometries. To
obtain a solution, the integral equation is first discretized to
form a system of algebraic equations which are then solved
for the acoustic potential at discrete points on the boundary.
From these values the rest of the sound field is obtained.
Methods for increasing the numerical accuracy by use of
Gaussian quadrature and other numerical integration
methods are presented and discussed. The first problem
considered is the numerical evaluation of the resonant
frequencies and natural modes of two-dimensional circular,
rectangular, and star configurations. Exact and numerical
values are compared for the circle and rectangle. The next
problem considered is a two-dimensional duct with a right-
angle bend with a sound source at one end and sound ab-
sorption treatment at various locations along the duct. The
results are compared with finite difference solutions. These
studies demonstrate the applicability of the integral for-
mulation to complicated geometries and general boundary
conditions. The next problem considered is the two-
dimensional radiation problem of a piston set in a right
circular cylinder. Again, the exact and numerical acoustic
fields are computed and compared. Finallv. a three-
dimensional problem of determining the acoustic properties
of a sphere is considered. The internal field is obtained using
an axisymmetric formulation.

II. Governing Equations

The integral formulations of the wave equation for internal
and radiation acoustic problems are developed in this section
for two and three dimensions. The boundary conditions
generally enccuntered in practical problems are then
discussed. For clarity, only a brief account of the derivation
of the basic equations will be given in this section. For a more
detailed and rigorous development, Refs. 26 through 29 can
be consulted.

Assume a frictionless, homogeneous gas, and let p, and p,,
be the density and pressure of the fluid at rest. Representing
the acoustic pressure and particle velocity at a time ¢ by p and
u, Euler’s equation for the conservation of momentum gives

du
Po o +Vp=0 (1

The continuity equation yields ihe relationship

a
2P 00}V u=0 ()
at

where ¢, is the speed of sound. By defining an acoustic
potential function ¥ such that

u=vvy »
Equation (1) provides the relation

v
P= =Py a" 4)

and Eq. (2) results in the classical wave equation

19°¥
2 g ____0
wr cj (5)
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The wave equation can also be written in terms of p and u, but
it is more convenient to work with an acoustic potential
function, from which both the acoustic pressure and particle
velocity can readily be obtained.

Equation (5) is the wave equation for a general time
dependence and can be written in integral form and solved by
using retarded potentials.?'?®* However, for most practical
problems a sinusoidal time dependence can be assumed which
simplifies the problem considerably. Assume

Y (r,t) =¢(r)e" (6)
Substituting Eq. (6) into Eq. (5) gives the Helmholtz equation
Vip+kip=0 (k=w/cy) 7)

which can be solved by simpler methods not involving the use
of retarded potentials.

Integral Formulation

To obtain an integral formulation of the Helmholtz
equation, consider the problem shown in Fig. 1. Applying

Green’s theorem to the Helmholtz equation'** gives the
following integral relation
G (P, 36(Q)
S "9(Q) R et g JdS,=0  (®
r ang ang

where ¢ is the acoustic poteniial function and G is the Green’s
function defined by Eqs. (14-16), which also satisfies the
Helmholtz equation. The Green’s function is regular inside
the surface except when P=Q. At this point G is singular. To
remove this singularity from the integral given by Eq. (8),
point P is surrounded by a small sphere or circle ¢ of radius e.
The integral will now include a term over o which, on taking
the limit as e—~0, gives

99 (Q) aG(P,Q)

ang —4(Q) _-anQ

¢(P)=C5r[G(P.Q) s, O

where C is i/4 for two dimensions and 1/4x for axisymmetric
and three-dimensional shapes.

From Eq. (9) the value of the acoustic potential function at
any point P within the surface can be determined from the
boundary values of the potential and its normal derivative.
Thus, the entire wave pattern within the surface can be
constructed. For arbitrarily shaped surfaces for which
numerical techniques must be used to obtain a solution, Eq.
(9) requires much less computer storage than the differential

Circle or Sphere of
Ragdlus €

Integrals over Sy
ond S_ concel

, Integration Boundary
Fig. 1 Integration surface for an interior point.
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formulation given by Eq. (7). Using Eq. (9) the value of the
potential at each interior point can be obtained independently,
whereas the method of finite differences used to solve Eq. (7)
requires the simultaneous solution of ¢ for every interior
point. The integral formulation avoids the large matrices
involved with finite differences.

If the values of both ¢ and d¢/dn are known at every point
on the boundary then the wave pattern can readily be
determined from Eq. (9). However, for most practical
acoustic problems either d¢/dn or an admittance condition
relating ¢ and d¢/dn are given. Therefore, the values of the
acoustic potential at the boundary must first be determined.
The necessary relation is obtained by letting the point 7
approach the boundary at some point T to obtain the
following relation?®

d aG(T,
(G(TQ)—?—(—Q) e ;n 1.9 145, (10)

no Q

¢<n=2c§

Eq. (10) is applicable to a smooth boundary, but has been
extended to include cusps and corners.'®** To obtain the
interior wave pattern, Eq. (10) is first solved for the boundary
values of ¢. These values are then substituted into Eq. (9) to
determine the acoustic potential at the interior points. Both
Egs. (9) and (10) involve singular integrands as 7 approaches
Q although for smooth surfaces the integrals themselves are
regular.

For exterior problems, analogous expressions to Egs. (9)
and (10) are obtained by taking the point P outside the surface
I'.* The integration in Eq. (8) is then carried out over the
boundary, around a circle or sphere of radius e with point P as
a center, and then around a circle or sphere of radius R, which
is arbitrarily large. In this manner the integration includes the
entire external domain. However, by applying Sommerfeld’s
radiation condition, it can be shown that the integral about
the infinite sphere or circle approaches zero as R approaches
infinity.* Thus, the corresponding equations for the external
domain become

aG (P,
0P ==} 160 5 & —or "R as, ()
o
and
aG(T,
o(n=-2c|, [G(TQ)—"’—‘9 5@ a5,
o (12)

It is important to note that Eqgs. (11) and (12) involve in-
tegrations about the boundary of the body only. Thus, the
radiated field at any distance from the body can be obtained
once the surface acoustic potential is known. With finite
differences, the values of the potential at every point in a very
large domain would have to be computed in order to obtain
the radiated field. Also, an artificial boundary condition at a
large distance from the surface must be assumed. These
factors make the application of finite differences to problems
of this type rather inefficient whereas the integral formulation
can readily be adopted to such situations.

Eqgs. (9) through (12) are applicable to two-dimensional,
axisymmetric, and three-dimensional acoustic problems. In
the two-dimensional and axisymmetric cases, these equations
involve line integrals; and in the three-dimensional case, the
integrals are taken over a surface. Note that the dimen-
sionality of the problem is reduced by one—a valuable
simplification.

The Green'’s functions satisfy the following inhomogeneous
forms of the Helmholtz reduction with homogeneous
boundary conditions '

VG+k’G=8(P-Q) (13)

.  —p—
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where & is the Dirac delta function. The Green’s functions
1,17,18
are"'"

G(P,Q) =H, " (kr) fortwo dimensions, (14)

tkr

G(P,Q) =2S , L cos m@dé for axisymmetric bodies (15)
r

and
G(P,Q) =e ~*7/r for three dimensions (16)

where r is the distance between points P and Q, and
HJ"' (kr) is the zeroth order Hankel function of the first kind.

Boundary Conditions

The two most common boundary conditions in practical
acoustic problems are the Neumann and Robin conditions.
The Neumann condition of interest in the present study is

dp/an=A (17)

where A is the velocity amplitude of a given sound source. In
the absence of a sound source A =0; this condition means that
the particle velocity is zero at the boundary which implies a
perfectly reflecting, or rigid surface. For surfaces which
absorb sound, such as lined duct walls, an admittance con-
dition is usually specified, which leads to the Robin condition.
Defined as the radio of the normal component of the particle
velocity to the pressure perturbation, the admittance y can be
written as

y=poCo(u/P) (18)

Substituting for u, and p from Egs. (3) and (4) gives
(0¢/0n) + ikyp=0 (19)

Eq. (19) is the Robin condition.”” For sound-absorbing
materials or devices, the admittance can be either analytically
determined*®*? or measured using the impedance tube or a
related technique.*3* The effects of a given material on the
internal acoustic properties of a particular geometry can be

Fig.2 Geometric considerations for the general problem.
T ———— ~ ——==-¢_l
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determined by substituting the admittance of the material into
Eq. (19) and solving Egs. (9) and (10) or (11) and (12) for the
acoustic potential. Thus, the analytical techniques used in this
investigation is applicable to a vast number of duct acoustic
problems. Since the admittance of a combustion process can
also be measured, ** this analysis can also be applied to related
linear combustion instability problems, provided that the
equations are applied to regions where the Helmholtz
equation holds and mean flow effects can be neglected. By
replacing the combustion process by an admittance condition,
studies of combustion instability have been conducted in
liquid and solid propellant combustors.?**” This research
allows the extension of these analyses to more general shapes.

Substituting Eq. (19) into Eq. (10) gives for the internal
field

Q)

o(D +ch[ 6012922 | ity (0)6(T,0)14S,

= -2¢|  AQG(T.Q)ds, (20)

A similar expression is obtained from Eq. (12) for the exterior
problem. For surfaces with spatially varying admittances, the
admittance is a function of Q. For most cases considered in
this study, y is assumed constant although nonuniform ad-
mittance distributions can be easily handled.

III. Solution Technique

In the last section, the integral equations were developed
which describe the interior and exterior acoustic fields or a
surface with arbitrary shape and mixed boundary conditions.
The numerical solution technique for solving these equations
to obtain the internal or radiated acoustic patterns is
presented in this section and can be divided into four parts.
The first is the discretization of the integral equations into a
corresponding system of linear, and algebraic equations in ¢
suitable for solution on a computer. The second part is the
specification of the geometry and boundary conditions. The
third is the computation of the coefficients of the system of
equations and the final part is the methods used to solve for
the surface potential from the algebraic equations.

Discretization of the Integral Equations

In two dimensions and for axisymmetric problems, Eq. (20)
involves a one-dimensional improper integral about the
boundary line. For this type of problem several numerical
integration techniques***? are available. The simplest is the
trapezoidal rule which has been shown to yield excellent
results in two-dimensional studies with this type of in-
tegral.'***** Using this numerical integration scheme, Eq.
(20) becomes

80 m .
o +2(): [ i ) +:ky,G(r,,,,)]As

=-2CY A,G(r,,)aS, @n
/

where one equation for ¢ is obtained for each value of m and
m is varied from 1 to N. Eq. (21) was initially used in this
investigation to generate the N equations for ¢ and accurate
results were obtained when the admittance y was zero
everywhere on the boundary*’ which is the case considered in
previous studies. '”?*?* However, when a nonzero admittance
is assumed, this technique gives inaccurate results because of
the contribution from the Green’s function when the point j
appr »aches m. Because of the singular nature of the Green's
furction at the point m, care must be taken when numerically
integrating this function over the subinterval m. To increase
the accuracy in evaluating the integrand, Eq. (20) is broken up
into N integrals given by Eq. (22).

T R
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Smev: £3G(ry) | . ] }
bm {I+2CSS,,,_,/, [—a;:—+lkym0(r,7) ds,
+ 13 a
+2CZ S’ [ Oltim) oty G, ] ds,
an,
J#m
. 5141,1
=-2cY A,Ss G(r,)dS, 22
=1 =

In both Egs. (21) and (22) the values of ¢ are assumed to be
constant over each of the N subintervals. The difference is the
method by which the terms involving the Green’s function are
evaluated. In Eq. (21) an average value is computed over each
of the subintervals based on r,,,. With Eq. (22) these terms are
integrated numerically fromr,_,, ,, to r,, ., » using Gaussian
quadrature***° to obtain more accurate values. This type of
formulation has been used before with trapezoidal instead of
Gaussian quadrature formulas.'® In the present study for
two-dimensional and axisymmetric problems, a reduction in
error of two orders of magnitude in the numerical results for a
nonzero admittance was achieved using Eq. (22) instead of
Eq.(21).*°

Surface Geometry and Boundary Conditions

The first step in solving Eq. (22) is the determination of the
coefficients of ¢, and ¢,,. These coefficients depend upon the
surface geometry through the terms 8/9n;, r;,, and AS,. By
specifying the admittance y and/or the sound velocity am-
plitude A over every subinterval j, the effect of the boundary
conditions are included in the evaluation of the coefficients.

To solve for the terms involving the surface geometry, the
first expression inside the integrals of Eq. (22) is written as

aG(r) _9G(r) ar
on ~ ar on

Th expressions for dG/dr are obtained by differentiating Eqs.
(14) through (16). Substituting this expression into Eq. (22)

Table 1 Eigenfrequencies and natural modes of a circle
for various admittance values

o ADMITTANCE VALUE

o
w2 y=0 y=03 y=03l
COMPUTED 184122 !|832400‘ 1444(-0 0071
EXACT 184118 18322+04 14384

B0791+0539712.5369-0 0S|
307864054421  2.5427

COMPUTED| 305423
EXACT 305424
COMPUTED| 3.83175
EXACT 383171

Not Computed Iuo' Computed
38188+0.309%4 3.5510

42538 06199135816 - 0.023i
42532 0.638| 35618

COMPUTED| 420135
EXACT 420119

COMPUTED | 531783
EXACT 53755

Not Computed |Not Computed
PJ’S! o7ion 45767

+ +
[ !
+11 '

Table2 Resonant frequencies and natural modes of a
rectangle for different admittance values at the ends

ADMIT TANCE VALUE
y*0 y*03 y=03i
3 1432 3150 + 061991/ 2 55840.0021
3 1416 3142 +0 61904 29559

62877 630240 61961 5.886 40 002!
EXACT 62832 6.283 +0 Sl” 5864

- i
EEMTED 7 0312 7.146 005“0 6 333 - 0007
EXACT 7 0248 Not Computed 6283

COMPUTED  8.893
m EXACT 8886

"! ICOMPU 9 4%9 9.456 + 06106i( 8.847 +0.007
lexact 94248 (9425406801 8.842

8934406101 | 8 303-001i
Not Computed 8299
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gives a relation which involves dr/dn,, r,, and d3. The ex-
pressions for dr/dn,, r,, and dS can be written in parametric
form for bodies with simple shapes, and this type of
representation has been used in previous studies using simple
geometries. '%202441.42 By taking advantage of symmetry,
considerable savings in computer storage and computation
times were achieved. In fact, Greenspan and Werner*
showed that for a circle, Eq. (22) can be reduced to a single
equation instead of a system of equations which could readily
be solved to obtain the acoustic field. In the study by Tai and
Shaw, 2* the method of images (Ref. 1, Ch. 11) was used to
greatly reduce the numer of points necessary to compute
eigenfrequencies and eigenmodes of a family of triangles.
Although these studies demonstrate valuable simplifications
which can be made in applying the integral formu!ation to a
particular problem, the techniques used are not applicable to
more general problems involving complicated geometries and
nonuniform boundary conditions.

In the present study for two dimensions, the expressions for
the geometric variables are written in parametric form only
for the circle. In the rest of the configurations considered, a
general formulation is used. The fact that a parametric
representation cannot be used in general cases is not a serious
drawback—in fact, it somewhat simplifies the formulation.
Consider the general two-dimensional problem depicted in
Fig. 2. By specifying the x and y coordinates at the midpoint
of each of the subintervals, the distance ry, is readily com-
puted from the expression

Fim=V (X =x) T+ (V= ym)’ (23)

The expression for dr/dn; can then be obtained since it
represents the dot product of the gradient of r and the normai
atj. Thus,

_(?L_‘ (x/_xm)’h+(yj—ym)nyj (24)

an, Tim

where n,, is the component of the normal vector j in the x
direction (or the cosine of the angle between the normal vector
and the x-axis) and n,, is the corresponding y component (the
sine of the angle between the normal vector and the y-axis).
Analagous expressions for r;,, and dr/dn; can be obtained for
axisymmetric'”'® and three-dimensional problems. For two-
dimensional and axisymmetric problems, the line segment
length AS; is simply

S, =V =% ) T+ Wjan=Yi-n)’

or, for N equally spaced subintervals, S, =L./N where L is the
length of the perimeter of the surface. For three-dimensional
bodies, AS, is the area of each of the subsurfaces taken over
the boundary.

‘ig. 3 Nodal points and lines for the first nine modes of the star.
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Computation of the Coefficients of the Discretized Integrai Equation

Once the geometry has been specified, the coefficient of ¢
in Eq. (22) can be determined by evaluating the Green's
functions G(r,,,) and dG(r,,) /dr,,. There are two problems
in determining these functions: the first is a rapid, accurate
method for computing them over a wide range of the
argument kr,; and the second is the singularity associated
with each function as r,,, approaches zero.

For the two-dimensional problems to compute the Hankel
functions two routines have been used in this study. The first
consists of a series expansion using standard formulas for the
Hankel function with complex arguments.**** A sufficient
number of terms is taken to satisfy a specified degree of
accuracy. To minimize time, a different series expansion
which was developed by Hitchcock** is used for determining
these functions in the studies of the rectangle, star, and duct
with a right-angle bend. With his formulation, accuracies of
10 - '° or greater are achieved using nine terms or less in the
series expansion. Reductions of up to 50% in computer times
can be achieved with this formulation.

For the axisymmetric problem, the integral in Eq. (15) is
carried out using a 20-point Gauss-Legendre quadrature
formula. For three-dimensional problems, evaluation of the
Green’s function given by Eq. (16) is straightforward.

The major problem in accurately computing the coef-
ficients in Eq. (22) is the singularity associated with the
Green'’s functions as r;, approaches zero; that is, as the point
j approaches m in Fig. 2. The two-dimensional and
axisymmetric Green’s functions have logarithmic
singularities. In this study, the inaccuracies involved are
minimized by subdividing the intervals as indicated by Eq.
(22).

Determination of the Acoustic Potential

Once the coefficients of the surface potential at each
discrete point on the surface are determined, the equations are
solved for ¢ using a complex Gauss-Jordan reduction scheme.
The interior or exterior points can then be found using the
discretized form of Eq. (9).

To determine the eigenfrequencies of a particular geometry,
the technique described in Ref. 40 is used. Essentially, this
technique consists of: 1) determining the frequency k for
which the determinant of the coefficients in the homogeneous
form of Eq. (22) is zero, 2) normalizing the equation at the
eigenfrequency to obtain the surface distribution of the mode,
and 3) using Eq. (9) in discretized form to find the interior
sound field.

V. Results

Using the numerical techniques described in the last section,
solutions have been obtained for a variety of two-dimensional
and axisymmetric problems to demonstrate its broad range of

Table 3 Surface potentials for a circle of unit radius,
second mode, V=0

Angle Numerical Exact
12 9130 9135
24 L6681 6691
36 3077 309
48 - .1059 ~.1048
60 -.5012 S000
72 - .8099 8090
84 978§ 9781
96 9779 97RI1

108 - .8082 8090

120 ~ 4988 .S000

132 -.1013 ~. 1048

144 3104 3090

156 6702 6691

168 9141 9138

180 1.0000 1.0000
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Table s Surface potential for a rectangle, height to width
ratio = 0.5, first mode, rigid walls

~ Numerical - Exact
1/2 1/14 1.0061 1.0063
1/2 2/14 1.0060 1.0063
1/2 3/14 1.0055 1.0063
13/28 1/4 1.0000 1.0000
11/28 1/4 .9501 9499
9/28 1/4 .8524 8521
7/28 1/4 7119 7116
5/28 1/4 .5356 5354
3/28 1/4 3325 3324

1/28 174 1127 1127

applications. The two-dimensional form of the integral
equation has been used to compute the ~¢sonant frequencies
and natural modes of a circle, rectangle, and star con-
figuration. In addition, the problem of a duct with a right
angle bend is considered, and results using Eq. (22) are
compared with finite difference solutions. The two-
dimensional problem of sound radiation from a right circular
cylinder is then considered and the numerical and exact
solutions are compared. Finally the acoustic properties of a
sphere are computed using the axisymmetric formualtion.

For a circle and rectangle, comparisons between exact and
numerical solutions are presented in Tables 1 and 2. In these
tables the numerical and exact eigenfrequencies are tabulated
for three admittance values, y=0, y=0.3, y=0.3i, with thirty
points taken on the boundary. The best agreement between
the computed and exact results occurs at the zero admittance
condition. For the circle, the real part of the eigenfrequencies
compare to five significant figures and the imaginary parts are
accurate to 0.001 for the first five modes. When a nonzero
admittance condition is introduced, the accuracy is reduced 1o
three significant figures in the real part and to 0.0l in the
imaginary part of the eigenfrequencies.

As with the circle, the agreement between the exact and
numerical values for the rectangle is good for a rigid bound-
ary but deteriorates when a nonzero admittance is in-
troduced. From Table 2 the agreement is to almost four
significant figures in the real part of the eigenfrequency and to
within 0.01 in the imaginary part for a rigid wall. The
Gaussian integration techniques developed in Sec. I1I improve

Caose |: y=O
/sm Source Case2:y=|
V
/. |
Grid for T T
Finite Differences
L
Boundary Points
‘or Integral Formulation
rrhry st

Fig. 4 Locations of the discrete points, nonzero admittance
boundaries, and the sound source for the duct with a right-angle bend.
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Fig. 5 Comparison of numerical results for a duct with a right-angle
bend using the integral and finite difference approaches, Case 1.
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Fig. 6 Comparison of numerical results for a duct with a right-angle
bend using the integral and finite difference approaches, Case 2.

the accuracy of the computed eigenfrequencies for a nonzero
admittance conditior by an order of magnitude.

For the circle the accuracy of the computed natural mode
shapes is shown in Table 3. The agreement between the exact
and computed eigenmodes for a rigid boundary is to within
0.01% for interior points sufficiently far removed from the
boundary. For a nonzero admittance at the surface, the ac-
curacy is to within 2%. These results are obtained using the
interior analog of Eq. (21) which explains the deterioration in
accuracy of the interior points as the boundary is approached.
Equation (22) is used in the studies of the rectangle, star, and
duct problems and more accurate results are obtained close to
the boundary. For the rectangle, the boundary values of the
acoustic potential are presented in Table 4. The agreement
between the exact and numerical results is within one-half of a
percent. Computation times range from ten sec per eigen-
frequency for the circle to 45 sec for the rectangle on
UNIVAC 1108 computer. Using the discretized form of Eq.
(9), interior points require approximately two sec per point to
compute.

In studying the star-shaped boundary, which is of interest
in solid-rocket combustion instability problems, the ap-
plicability of the integral solution technique to a complicated
geometry for which separation of variables does not apply can
be assessed. The first nine eigenfrequencies and natural modes
for the star are presented in Fig. 3 for a rigid wall with 48
points taken on the surface. The most unique feature of the
acoustic field for the star is the appearance of nodal points at
some of the resonant modes. In the circle and rectangle nodal
lines only are present, and they follow one of the separable
coordinates of the boundary. With the star both nodal lines
and points can occur which is in qualitative agreement with
experimental observations for unstable solid propellant
combustors. Computation times are from 60 to 75 sec per
mode. The modes of a typical solid propellant configuration
during a burn have also been computed and are given in Ref.
45.

The last internal two-dimensional problem investigated is
that of a duct with a right-angle bend shown in Fig. 4. The

reasons for studying this conﬁguration are: l! to invgtiiﬁi! — o
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Fig. 7 Sound pattern produced by a 20° vibrating piston set in a
circular cylinder.

nonuniform surface admittance, 2) to include a sound source
in the integral formulation, and 3) compare the results ob-
tained by the integral technique with the finite difference
solutions of Ref. 13.

The results obtained using this configuration are presented
in Figs. S and 6 and are compared with the solutions obtained
uisng the finite difference method. Although the resuits using
the integral approach are in qualitative agreement with the
finite difference solution, quantitative agreement is lacking.
The same number of boundary points are taken in both cases.
Doubling the number of subintervals using Eq. (22) does not
improve the agreement between the two sets of data.
However, it does show that the results of the integral for-
mulation are self-consistent. An experimental setup is

Table S Resonant frequencies and surface potentials for a sphere
of unit radius, first and second modes, axisymmetric formulation

Resonant frequencies

Computed Exact
2.084-0.0041 08
3.346-0.007i 3.342

Normalized surface protén‘liiarlr i
Angle Computed Exact
(First mode) t. ' . R G e
3 1.00000 1.00000
15 96960 196962
25 90975 .90977
35 .82232 .82228
45 70992 .70981
hb) .57593 575717
65 42439 .42423
75 .25992 25981
85 08753 .08749
(Second mode)
5 1.0000 1.0000
15 9098 9099
25 .7403 7405
35 5121 5124
45 2278 2529
55 ~.0072 ~.0066
65 -.2346 ~.2348
75 ~.4051 ~.4041
8S 4953 -.4942
“Numerical results obtained using Eq. (21) instead of Eq. (22).
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currently being developed to check these results and should
clarify the discrepancy between these two methods.

For two-dimensional radiation problems, excellent results
are obtained as shown in Fig. 7. Here the radiated field from a
piston set in a right circular cylinder is computed and com-
pared with exact results from Ref. 3. The mean square error is
less than 2% while the computation time required is 15 sec to
obtain both the surface and far field patterns.

To check the accuracy of the axisymmetric formulation, the
first two resonant frequencies and natural moce shapes of a
sphere were computed and are presented in Table 5. As with
the two-dimensional problems, agreement between the exact
and numerical calculations is excellent. Computation times
are approximately two minutes per mode; however, no at-
tempt was made to take advantage of the symmetry of the
problem which can reduce the computation time by at least a
factor of two.

Conclusions and Recommendations

The results for the circle and rectangle show that the in-
tegral technique is very accurate in determining resonant
frequencies and natural mode shapes. Its application to the
star configuration demonstrates its usefulness in studying the
acoustics of complicated shapes. For the duct with a right-
angle bend, the integral approach is shown to be applicable to
nonuniform boundary conditions involving sound sources.
The formulation also gives accurate results for two-
dimensional radiation problems shown in the study of the
right circular cylinder.

With the axisymmetric formulation accurate results are
obtained for the internal eigenmodes of a sphere. Extensions
to more complicated boundaries can readily be made.
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